Не все то кавитация, что шумит

Кавитация в камере насоса явление, мягко говоря, не желательное. Последствия разрушительного действия тысяч микроскопических гидроударов на рабочие колеса насосов видны на Рис 1, 2. Процесс кавитации сопровождается характерным звуком, шипением с металлическим звоном.
Последствия разрушительного действия тысяч микроскопических гидроударов на рабочие колеса насосов

Рис 1                                                                                Рис 2

Но если вы слышите звук и думаете, что это кавитация, то это не всегда так. Вернемся к физике процесса.

Кавитация и как её избежать

Кавитация – это процесс образования и схлопывания пузырьков пара в движущейся жидкости. Причиной возникновения пузырьков является локальное снижение давления на всасывающей стороне насоса и часть воды там закипает.

Из курса физики известно, что температура кипения воды зависит от давления. При нормальном атмосферном давлении вода закипает при 100°С, а на высокогорных плато, где атмосфера разрежена и давление ниже, уже при 70°.

В приемной камере насоса давление может падать до нескольких процентов от атмосферного и часть воды закипает даже при температуре 7-10°С, с образованием множества микроскопических пузырьков пара. А при прохождении жидкости через рабочее колесо, давление резко возрастает, процесс кипения прекращается, пузырьки схлопываются. Процесс резкого схлопывания сопровождается ударной волной (гидроударом), которая и разрушает рабочие части насоса и вызывает характерный шум.

Чтобы не допустить возникновения кавитации производители насосов в характеристиках указывают параметр NPSH: Net Positive Suction Head – чистый гидравлический напор (кавитационный запас). Измеряется в метрах водяного столба.

По сути, он значит, что давление перекачиваемой жидкости на всасывающей стороне насоса не должно опускаться ниже указанного уровня NPSH.

На Рис 3 изображен образец графика кривой насоса. Для выбранной рабочей точки Q=16,2м3\ч; H=45,5м кавитационный запас составляет 1,4 метра.
а Рис 3 изображен образец графика кривой насоса. Для выбранной рабочей точки Q=16,2м3\ч; H=45,5м кавитационный запас составляет 1,4 метра.

Рис 3

Чтобы оценить склонность системы к возникновению кавитации нужно сравнить реальное давление на всасывающей стороне (маркируется NPSHa) с данными от производителя (паспортным NPSH, в нашем примере =1,4 м, его еще маркируют NPSHr). Для стабильной работы насоса рекомендуется, чтобы уровень NPSHa был больше NPSHr минимум на 0,5м – в нашем примере NPSHa должен быть не меньше 1,4+0,5=1,9 метра.

Проще всего измерить уровень NPSHa с помощью манометра, установленного на всасывающей стороне перед насосом.

Но сделать это не всегда возможно, поэтому приводим несколько формул для расчета уровня NPSHa, для самых распространенных вариантов. Эскизы и формулы также полезны для понимания физики процесса.
Эскизы и формулы также полезны для понимания физики процесса работы насоса в разных режимах.

 Рис 4                                                                                                 Рис 5

Где:

Pb = атмосферное давление, в метрах;

Vp = Давление насыщенных паров жидкости при максимальной рабочей температуре жидкости, в метрах;

P = Давление на поверхности жидкости в закрытой емкости, в метрах;

Ls = Максимальная высота всасывания, в метрах;

Lh =Максимальная высота подпора, в метрах;

Hf = Потери на трение во всасывающем трубопроводе при требуемой производительности насоса, в метрах.
Несколько формул и иллюстрации для расчета уровня NPSHa, для самых распространенных вариантов режима работы насосов в системах закрытого типа.

Рис 6                                                                                          Рис 7

Воздухововлечение – что это и чем грозит

Но похожий звук могут давать и растворенный в воде воздух, который тоже образовывает пузырьки при падении давления. Вреда от этих пузырьков существенно меньше, так как они не могут так резко схлопнуться, чтобы образовать ударную волну.

Но если воздуха в воде будет слишком много, а так бывает если идет подсос через трещину в трубе или повреждение фланцевых уплотнений, то в рабочей камере насоса может образоваться «воздушный замок» и движение жидкости останавливается. Насос все же не компрессор и протолкнуть воздушную пробку не может, и в результате перестает качать. Давление на выходе падает, и хорошо, если насос отключит система защиты от сухого хода. Иначе насос выйдет из строя.

Но даже если воздуха в жидкости недостаточно чтобы образовать воздушную пробку и остановить поток, эта «гремучая смесь» вызывает вибрацию, которая вредит подшипниками и торцевым уплотнениям, а шум легко спутать с кавитацией.

Эта проблема чаще присуща самовсасывающим системам (см. Рис. 4, 6). Давление на всасывающей стороне у них ниже атмосферного и, если погруженный в емкость патрубок оказывается слишком близко к поверхности, он засасывает водно-воздушную смесь, которая и вызывает вышеописанные проблемы.

Чтобы рассчитать минимально необходимую глубину погружение патрубка существует множество формул главными переменными, в которых являются размер (производительность) насоса и скорость движения жидкости во всасывающем трубопроводе. Но по опыту эксплуатации и эмпирическим данным известно, что:

  • для маломощных самовсасывающих насосов – минимальный уровень погружения патрубка – 1 метр;
  • для больших насосов – уровень погружения патрубка не менее 3 метров.

Вихри и водовороты в области заборного патрубка

Бывают ситуации, когда выдержать требования по глубине погружения или скорости движения жидкости через водозаборный патрубок невозможно. В таких случаях есть опасность образования водных вихрей (водоворотов) в районе всасывающего патрубка. Структура формирования вихря показана на Рис 8.

Структура формирования вихря. Как закручивающийся водный поток образует «хобот», который затягивает воздух во всасывающий патрубок.  Рис 8

Закручивающийся водный поток образует «хобот», который затягивает воздух во всасывающий патрубок. К чему это может привести описано в предыдущем пункте.

А если сам «хобот» вихря поднимется по трубе в камеру насоса, то перед тем как он будет «разрублен» рабочим колесом, вал, само колесо и подшипниковые узлы испытывают значительные динамические нагрузки, и вибрацию. Тем более, что сам по себе водяной вихрь нестабилен, и его конец «гуляет» по радиусу рабочего колеса. Эффективно противостоять возникновению вихря внутри всасывающего патрубка помогает раструб (колокол) на конце трубопровода (иллюстрация).

Эффективно противостоять возникновению вихря внутри всасывающего патрубка помогает раструб (колокол) на конце трубопровода, диаметр которого в 1,3 раза больше диаметра основной всасывающей трубы, см. Рис. 9. Кромка колокола разрубает «хобот» водоворота и не дает ему подняться в трубу.

Рис 9

Если раструба недостаточно специалисты рекомендуют также вертикальные перегородки вокруг труб, похожие на ракетные стабилизаторы.

На Рис 10, 11 изображены крайне нежелательные варианты взаимного расположения труб, которые увеличивают опасность возникновение вихрей во всасывающем трубопроводе.
Крайне нежелательные варианты взаимного расположения труб, которые увеличивают опасность возникновение вихрей во всасывающем трубопроводе насоса.

Рис 10                                                                                                 Рис 11

Если конструкция и размеры резервуара не позволяют максимально удалить всасывающие и напорные трубопроводы друг от друга, специалисты-гидротехники рекомендуют устанавливать между ними перегородку, которая будет разрушать вихревые потоки.

Надеемся материал статьи был для вас полезен, если есть дополнительные вопросы по подбору и эксплуатации насосного оборудования, звоните нам +38 (044) 587-78-30. Наш технический отдел всегда к вашим услугам.

Поделитесь статьей в соц сетях с Вашими коллегами, которым важно знать такие факты.

Leave a Reply

Your email address will not be published. Required fields are marked *


×